2021-4-9 | 材料化學論文
作者:劉志明 單位:東北林業大學材料科學與工程學院
緒論是引導學生快速進入材料化學主體內容比較關鍵的部分,在緒論這章應該讓學生盡快對材料化學這門課程的一些基本概念、材料化學的主體內容范圍及其地位和作用以及一些學習方法,包括思維方式的轉化和訓練方面有一些了解,同時由于是雙語教學,不斷滲透英語教學內容仍是主體,所以在緒論內容設計上,逐步導入英文教材內容,用英語表述一些概念,對概念的理解上,采取中英文表述,主要是照顧英文理解較差的學生,同時給學生一個適應的過程。在“以學生為本”的教學理念下,對材料化學緒論內容進行設計和實踐,以下是教學實踐中的嘗試和總結,以其今后更好地進行材料化學課程雙語教學,教學方法上“重視學”,“以學生為本”,提高教學質量,實施以培養能力為中心的素質教育。
材料概念的導入
1材料的定義有關材料的定義有以下幾種:材料是具有結構、光、磁、電的用途的物質(Matterisamaterialwhenthatformofmatterhasstructural,optical,magnetic,orelectricuse)。材料是能為人類社會經濟地制造有用器材(或物品)的物質(Matterisamaterialwhenthatformofmattercanbemanufacturedintousefulobjectseconomicallyforthehumansociety)[13]。材料是人類用來制作物件,如用具、工具、元器件、設備設施、系統等的物質。《辭海》給材料下的定義是:經過人類勞動所取得的勞動對象稱為原料,而經過工業加工的原料如鋼材、水泥等則稱為材料[14]。這是以往對材料的定義,隨著時代的發展,材料基本含義沒有太大變化,內容上豐富許多。與時俱進,現在采用英文教材的最新定義,是需要學生理解和掌握的。英文教材的定義為:材料可廣泛定義為可用于解決當前或未來社會需要的任何固態組件和設備(Thetermmaterialmaybebroadlydefinedasanysolid-statecomponentordevicethatmaybeusedtoaddressacurrentorfuturesocietalneed)[15-16]。例如,釘子、木材、涂料等解決我們住房需求的簡單建筑材料(Forinstance,simplebuildingmaterialssuchasnails,wood,coatings,etc.addressourneedofshelter)。
2材料的分類材料分類有很多種,現代材料一般分為金屬(metals)材料,高分子(polymer)材料如塑料、橡膠、纖維等,無機材料如陶瓷(ceramics)、玻璃、水泥、磚瓦等和復合(composites)材料四大類[17]。英文教材將材料分為天然的(natural)和合成的(synthetic)兩大類材料。天然的材料分為無機(inorganic)和有機(organic)材料。無機天然材料包括礦物(minerals)、黏土(clays)、砂(sand)、骨(bone)和牙(teeth)。有機天然材料包括木材(wood)、皮革(leather)、糖(sugars)和蛋白質(proteins)。合成的材料包括大塊(bulk)、微米(microscale)、納米(nanoscale)材料。大塊(bulk)材料包括非晶態(amorphous)和結晶(crystalline)材料[15-16],這種材料分類更貼近材料化學的定位。
3復合材料復合材料廣義上是指由兩個或多個物理相(以微觀或宏觀的形式)所組成的固體材料。狹義上是指用高性能玻璃纖維、碳纖維、陶瓷纖維、晶須、芳香族聚酰胺纖維等增強的塑料,金屬和陶瓷材料等。國際標準化組織把復合材料定義為由兩種以上物理和化學上不同的物質組合起來而得到的一種多相固體材料[18-19]。
4新材料與功能材料為適應國民經濟、科學技術與國防建設的發展,滿足生產力發展與社會進步的要求新近出現或研發出來的、或正在發展中、具有傳統材料無法比擬或更為優異的性能之各種新型材料,均稱為新材料。新材料一般具備表征性、先導性、依托性、時間性、優能性和新穎性6個特征[14]。材料通常可分為結構材料與功能材料兩大類。結構材料是以強度、剛度、韌性、塑性、耐磨性、硬度等力學性能為其基本特征,用于制造以承受重力或傳遞應力為主要服役方式之結構構件的材料。功能材料則是具有特殊物理性能、化學性能或生物學性能等,主要用于制造各種功能元、器件的材料[14,20-21]。1965年,美國貝爾實驗室Morton博士提出功能材料的概念,20世紀70年代日本材料科技界完善確立,20世紀80年代在我國逐漸被人們接受。功能材料的定義,國內外尚無統一定論,國內比較一致的定義,功能材料是指那些具有優良的電學、磁學、光學、熱學、聲學、力學、化學、生物醫學功能,特殊的物理學、化學、生物學效應,能完成功能相互轉化、并被用于非結構用途的高技術材料。這些材料在元件、器件、整機或系統中,可實現對信息與能源的感知、采集、計測、傳輸、屏蔽、絕緣、吸收、貯存、記憶、處理、控制發射和轉換等目的[14]。
5納米材料20世紀70年代,日本科學家最早認識到納米性能并引用納米概念。20世紀80年代中期,人們正式把這種材料命名為納米材料。納米材料是指物質的粒徑至少有一維在1~100nm之間,具有特殊物理化學性質的材料[22-27]。組成納米材料的基本單元在維數上可分為三類:(1)零維。指在空間三維尺寸均在納米尺度內。如原子簇等。(2)一維。指在空間有兩維處于納米尺度。如納米絲、納米棒、納米管等。(3)二維。指在三維空間中有一維處于納米尺度。如超薄膜、多層膜等[24]。在實際應用中,以一個材料的10%質量分數作為閾值來確定其是否為納米材料,作為化妝品納米材料的判斷指標[28]。材料及其分類的介紹,主要側重英文教材的定義,讓學生記住其英文表達,同時強調材料的應用及最新材料介紹。
材料科學與材料工程的界定
材料科學是研究材料結構與性能間的關系,而材料工程是在這些結構與性能間的關系基礎上,對材料結構進行設計和工程化以生產預期性質的系列產品(Thedisciplineofmaterialsscienceinvolvesinvestigatingtherelationshipsthatexistbetweenthestructuresandpropertiesofmaterials.Incontrast,materialsengineeringis,onthebasisofthesestructure-propertycorrelations,designingorengineeringthestructureofamaterialtoproduceapredeterminedsetofproperties)[29]。
材料化學的定義
廣義上材料化學學科的定義致力于研究組成材料的原子、離子或分子排列之間的相互關系和它的整體宏觀結構/物理性質(Thebroadlydefineddisciplineofmaterialschemistryisfocusedonunderstandingtherelationshipsbetweenthearrangementofatoms,ions,ormoleculescomprisingamaterial,anditsoverallbulkstructural/physicalproperties)。依據這個定義,普通學科如高分子、固體和表面化學都包括在材料化學的研究范圍內(Bythisdesignation,commondisciplinessuchaspolymer,solid-state,andsurfacechemistrywouldallbeplacedwithinthescopeofmaterialschemistry)。這個廣泛的領域是由研究現有材料的結構/性質,新材料的合成和表征以及利用先進的計算法來預測未知材料的結構和性質組成的(Thisbroadfieldconsistsofstudyingthestructures/propertiesofexistingmaterials,synthesizingandcharacterizingnewmaterials,andusingadvancedcomputationaltechniquestopredictstructuresandpropertiesofmaterialsthathavenotyetbeenrealized)[15-16]。