2021-4-10 | 數(shù)學(xué)教育論文
一、哲學(xué)視角:數(shù)學(xué)教育的問題追問
問題一:教師“數(shù)學(xué)觀”的缺失
在數(shù)學(xué)教師心中,“數(shù)學(xué)哲學(xué)”“數(shù)學(xué)觀”這類話題離實踐太遠。如在“數(shù)學(xué)觀”調(diào)查中,有教師直言:“我不知道什么是數(shù)學(xué)觀,我也不知道我的數(shù)學(xué)觀是什么,但我?guī)缀蹩梢钥隙ǎ@些東西與我的教學(xué)工作沒有任何關(guān)系。”許多教師對數(shù)學(xué)哲學(xué)極為陌生,認為“數(shù)學(xué)觀”問題純粹是一個“玄學(xué)問題”。還有教師持有某些畸形、空泛的數(shù)學(xué)觀,認為“數(shù)學(xué)就是解題”等。何謂數(shù)學(xué)?或許我們未曾對之進行認真思索,但“數(shù)學(xué)觀”卻猶如一只“看不見的手”牽引著我們。當(dāng)我們遭遇數(shù)學(xué)問題時,我們往往需要做出決策,這時一種被稱為“觀點”或“主張”的“隱蔽觀念”就會不自覺地左右我們的行為,幫助我們決策、選擇。其實,這就是“數(shù)學(xué)觀”的雛形。
問題二:教師“數(shù)學(xué)教育觀”的缺席
國家課標制定組曾對200名中小學(xué)數(shù)學(xué)教師做過一項調(diào)查,調(diào)查問題是:當(dāng)你看到“數(shù)學(xué)”這個詞時你首先想到什么?調(diào)查結(jié)果是:76%的人想到計算、公式、法則;20%的人想到煩、枯燥、沒意思;只有4%的人回答數(shù)學(xué)使人聰明、有趣、有用。“學(xué)數(shù)學(xué)有什么價值?”許多教師告訴學(xué)生“數(shù)學(xué)學(xué)習(xí)很重要、很有用”,但到底有何用途又說不清楚。以至于學(xué)生走上社會后認為,“學(xué)數(shù)學(xué)除了應(yīng)付考試外沒任何價值”,“學(xué)數(shù)學(xué)知識只要有了小學(xué)水準,夠應(yīng)付日常生活就足夠了”。數(shù)學(xué)究竟是什么?數(shù)學(xué)教育應(yīng)當(dāng)追尋什么?這不僅指涉數(shù)學(xué)本體,更指向數(shù)學(xué)教育!
二、哲學(xué)思索:數(shù)學(xué)教育的價值追尋
哲學(xué)視域中追尋數(shù)學(xué)教育價值首先是追問“數(shù)學(xué)觀”,即“何為數(shù)學(xué)”。其次是追問“數(shù)學(xué)教育觀”,即“數(shù)學(xué)何為”。如此發(fā)問將有助于我們澄明并敞亮數(shù)學(xué)和數(shù)學(xué)教育之本性、本然,并在此澄明中進行哲學(xué)化教學(xué)實踐,即在哲學(xué)觀牽引下思考“怎樣去進行數(shù)學(xué)教學(xué)”。
(一)數(shù)學(xué)本體的哲學(xué)意蘊——追問“何為數(shù)學(xué)”
1.歷史掠影
“何為數(shù)學(xué)?”中國古代數(shù)學(xué)觀認為,數(shù)學(xué)是“技法之術(shù)”“濟世之術(shù)”“問題解決之器”,是歸納性、方法性的模式之學(xué),其代表作是《九章算術(shù)》。在古希臘,哲學(xué)家畢達哥拉斯認為“萬物皆數(shù)”,柏拉圖將數(shù)學(xué)看作“理念外化”,認為數(shù)學(xué)是“知性之學(xué)”(介于感性和理念之間)。希臘數(shù)學(xué)重邏輯、演繹,有形上傾向,其代表作為《幾何原本》。近現(xiàn)代以來,數(shù)學(xué)的哲學(xué)化定義更是層出不窮,如笛卡爾認為“數(shù)學(xué)是一個知識工具”;羅素認為“數(shù)學(xué)就是邏輯”;恩格斯認為“數(shù)學(xué)是研究現(xiàn)實世界空間形式和數(shù)量關(guān)系的科學(xué)”;維特根斯坦認為“數(shù)學(xué)是一種特殊的語言”;弗賴登塔爾認為“數(shù)學(xué)是系統(tǒng)化的常識”;斯托利亞爾認為“數(shù)學(xué)是一種活動”;等等。
2.哲學(xué)思辨
數(shù)學(xué)觀是人們對數(shù)學(xué)總的看法,即對數(shù)學(xué)本源、本質(zhì)和發(fā)展的認識。哲學(xué)家的“數(shù)學(xué)觀”建基于各自的哲學(xué)立場。自古希臘以來,西方哲學(xué)有經(jīng)驗主義和理性主義兩種路向。經(jīng)驗主義數(shù)學(xué)觀認為,數(shù)學(xué)是科學(xué)的分支,是直接和現(xiàn)實世界打交道的,數(shù)學(xué)思想來源于經(jīng)驗。理性主義數(shù)學(xué)觀認為,數(shù)學(xué)是無可懷疑的“真理集合”,是可靠知識的唯一代表。當(dāng)下數(shù)學(xué)教育“生活化與數(shù)學(xué)化”“形式化與非形式化”“日常化與學(xué)校化”等探討,究其本質(zhì)都是經(jīng)驗主義和理性主義之爭鳴。事實上,數(shù)學(xué)兼及經(jīng)驗性和演繹性。“一方面,數(shù)學(xué)是由概念、定義、定理等材料經(jīng)演繹而成的,是系統(tǒng)的演繹科學(xué);另一方面,數(shù)學(xué)也是體驗性、創(chuàng)造性的歸納科學(xué)。”(波利亞語)數(shù)學(xué)產(chǎn)生之初,人類“計算”牲畜、丈量土地的方法是一種不能離開實物對象的“實驗”方法,但數(shù)學(xué)一經(jīng)產(chǎn)生,研究的就是超越實物對象的“數(shù)”和理想的“點”“線”“面”等“思想事物”,并開始其抽象性發(fā)展。數(shù)學(xué)本質(zhì)如林夏水先生所言,是演(演繹)算(算法),又如“擬經(jīng)驗主義”所認為的,“是可誤的、可糾正的”。
(二)數(shù)學(xué)教育的哲學(xué)意趣——追問“數(shù)學(xué)何為”
1.歷史掠影
基于實用功利的數(shù)學(xué)觀,中國古代數(shù)學(xué)教育重算法、重應(yīng)用。基于“純粹理性”的數(shù)學(xué)觀,西方數(shù)學(xué)教育重思維、重演繹。教育哲學(xué)史上曾有“實質(zhì)教育”和“形式教育”之分。數(shù)學(xué)“實質(zhì)教育”主張數(shù)學(xué)是“科學(xué)的皇后”,為自然科學(xué)奠基;數(shù)學(xué)“形式教育”將數(shù)學(xué)作為“最高形式理性訓(xùn)練”。概言之,數(shù)學(xué)教育有“經(jīng)世致用”取向與“理性思辨”取向。
2.哲學(xué)思辨
當(dāng)代數(shù)學(xué)教育價值表現(xiàn)在:一方面,數(shù)學(xué)以其嚴密知識體系、思維訓(xùn)練、人格陶冶等“形式”充分發(fā)揮人的心智功能,滿足人們求真、向善、尚美之天性,具備其理性價值;另一方面,由數(shù)學(xué)經(jīng)驗性和實踐性衍生出來的應(yīng)用廣泛性直接決定了數(shù)學(xué)的實用價值(工具價值)。當(dāng)下數(shù)學(xué)教育一方面要關(guān)照兒童經(jīng)驗,充分發(fā)掘知識的生活原型,讓“生活數(shù)學(xué)”與“學(xué)校數(shù)學(xué)”有效對接,引導(dǎo)兒童經(jīng)歷“橫向數(shù)學(xué)化”(從生活到數(shù)學(xué));另一方面要培養(yǎng)兒童的數(shù)學(xué)眼光,讓兒童學(xué)會“數(shù)學(xué)式”思維乃至“通過數(shù)學(xué)學(xué)習(xí)學(xué)會思維”(鄭毓信語),引導(dǎo)兒童經(jīng)歷“縱向數(shù)學(xué)化”(從數(shù)學(xué)到數(shù)學(xué))。
三、哲學(xué)化實踐:哲學(xué)觀牽引下的數(shù)學(xué)教育
數(shù)學(xué)哲學(xué)應(yīng)當(dāng)成為數(shù)學(xué)教育實踐的“活的哲學(xué)”,指引數(shù)學(xué)活動的開展。同時,數(shù)學(xué)教育實踐也應(yīng)成為數(shù)學(xué)哲學(xué)研究的“活的源泉”,為數(shù)學(xué)哲學(xué)研究提供鮮活的感性素材。數(shù)學(xué)教育實踐是數(shù)學(xué)哲學(xué)研究的出發(fā)點和歸宿。
(一)捕捉數(shù)學(xué)文本中的哲學(xué)基因
當(dāng)我們用“哲學(xué)眼光”來打量小學(xué)數(shù)學(xué)教材時,可以發(fā)現(xiàn)許多蘊含“哲學(xué)味”、能萌發(fā)兒童哲思的數(shù)學(xué)素材,如本源性素材、發(fā)展性素材、本質(zhì)性素材、結(jié)構(gòu)性素材等。教師要有意識地捕捉數(shù)學(xué)文本中的哲學(xué)基因。
1.追本溯源,發(fā)掘“本源性素材”
哲學(xué)總是追問本源,數(shù)學(xué)教學(xué)也要追本溯源(概念發(fā)生之源、工具產(chǎn)生之源、法則建構(gòu)之源)。如低年級的“加減乘除”符號由來;中年級的“古代計數(shù)法”“24時計時法”“時間尺的誕生”“分數(shù)的產(chǎn)生”等;高年級的“《九章算術(shù)》之正負數(shù)思想、以盈補虛法”“古代方程思想發(fā)展”“求公因數(shù)方法”等。通過“本源性素材”,明晰知識的“源”“流”,追尋知識的來龍去脈。
2.叩問本質(zhì),透析“本質(zhì)性素材”
“叩問本質(zhì)”是經(jīng)典性的哲學(xué)思維,也是數(shù)學(xué)教學(xué)的應(yīng)有之義。如教學(xué)“平移和旋轉(zhuǎn)”要抓住“方向、距離、角度”;教學(xué)“用字母表示數(shù)”,要讓孩子感悟“字母不但可表示已知、確定的數(shù),更可表示未知、不確定的數(shù)”;教學(xué)“間隔排列”要滲透“一一對應(yīng)”思想;教學(xué)“平行四邊形、三角形、梯形面積”要滲透“轉(zhuǎn)化”思想,追問“轉(zhuǎn)化”依據(jù);教學(xué)“方程”,要讓兒童體驗“尋找未知數(shù)”過程;教學(xué)“圖形覆蓋現(xiàn)象中的規(guī)律”,要讓兒童深度思考“為什么‘得到不同選擇的個數(shù)’比‘平移的次數(shù)’多1”;教學(xué)“倒數(shù)”,要緊扣“乘積是1”;等等。本質(zhì)是知識內(nèi)核,教學(xué)中要讓兒童以合適的方式去體驗。
3.承前啟后,關(guān)注“發(fā)展性素材”
辯證哲學(xué)觀認為,事物是不斷發(fā)展變化的,數(shù)學(xué)知識也是如此。許多數(shù)學(xué)概念是按兒童年齡特征、認知規(guī)律編排的,其意義處于不斷擴充與發(fā)展中。最簡單的如數(shù)“1”,認數(shù)時表示物體基數(shù)、序數(shù)意義;以后在多位數(shù)不同數(shù)位上時表示10、100、1000等;引進小數(shù)和分數(shù)意義后又表示一個整體。再如“0”,開始認數(shù)時表示一個單位也沒有;以后在多位數(shù)讀寫中用來“占位”;引進“量的計量”后在刻度尺、量角器上又表示起點。又如“分數(shù)”,不同情境有不同“意義”(“份數(shù)定義”、“商的定義”、“比的定義”與“公理化定義”等)。對于發(fā)展型素材,教學(xué)時要能承前啟后。
4.把握關(guān)聯(lián),洞悉“結(jié)構(gòu)性素材”
“關(guān)系哲學(xué)”認為,知識不應(yīng)是散點形態(tài),而應(yīng)是鑲嵌在關(guān)系之中。數(shù)學(xué)教學(xué)有兩個層面,一是對“知識點”本身的理解,二是對知識結(jié)構(gòu)(知識鏈、知識網(wǎng)、知識群)的把握。單子式“知識點”只有融入“知識結(jié)構(gòu)”中才能獲得深刻而全面的認識。知識結(jié)構(gòu)有外顯結(jié)構(gòu)和內(nèi)隱結(jié)構(gòu)。如因數(shù)、倍數(shù)、公因數(shù)、公倍數(shù)、約分、通分、異分母分數(shù)相加減,長方形、正方形、平行四邊形、三角形、梯形面積計算等就是一種外顯結(jié)構(gòu),外顯結(jié)構(gòu)教學(xué)當(dāng)循“序”漸進。而貫穿整數(shù)、小數(shù)和分數(shù)加減法計算算理的是一條暗線,其內(nèi)隱結(jié)構(gòu)為“只有計數(shù)單位相同才能直接相加減”;長方體、正方體、圓柱體側(cè)面積計算公式各異,而其內(nèi)隱結(jié)構(gòu)為“底面周長乘高”;長方體、正方體、圓柱體體積計算,其內(nèi)隱結(jié)構(gòu)為“底面積乘高”。內(nèi)隱結(jié)構(gòu)教學(xué)要求教師能洞悉知識的生長點、聯(lián)結(jié)點、結(jié)構(gòu)點。
(二)讓數(shù)學(xué)教學(xué)蘊含哲學(xué)氣質(zhì)
數(shù)學(xué)知識具有經(jīng)驗性(如小數(shù)、分數(shù)的認識、計算等)和超驗性(如無限不循環(huán)小數(shù)π等)。“經(jīng)驗性知識”教學(xué)適合演繹,遵循知識的發(fā)生原則;“超驗性知識”教學(xué)適合于“猜測與反駁”“證明與證偽”。不同的教學(xué)方式、主張與流派背后顯現(xiàn)的是不同的數(shù)學(xué)觀與教育觀。蘊含哲學(xué)氣質(zhì)的教學(xué)遵循對話的“邏各斯”,關(guān)注“知識”與“人”的相遇、與“人”的意義聯(lián)系,一如孔子之啟發(fā)式,蘇格拉底之產(chǎn)婆術(shù)。
1“.融通式”教學(xué):“高觀點”下洞悉知識的數(shù)學(xué)本質(zhì)
數(shù)學(xué)哲學(xué)認為,知識不僅是公式的羅列,更是圍繞“高觀點”(highpoint)組織的。“高觀點”(數(shù)學(xué)思想、方法與精神)是知識的靈魂。在數(shù)學(xué)家克萊因看來,數(shù)學(xué)教師的職責(zé)是“使學(xué)生了解數(shù)學(xué)并不是孤立的各門學(xué)問,而是一個有機的整體”。他認為,“數(shù)學(xué)的每一個分支,原則上應(yīng)看作是數(shù)學(xué)整體的代表”,“許多初等數(shù)學(xué)現(xiàn)象只有在非初等理論結(jié)構(gòu)內(nèi)才能被深刻理解”。教師應(yīng)站在“高觀點”下審視、理解初等數(shù)學(xué)問題。唯如此,數(shù)學(xué)教育方能居高臨下、瞻前顧后、以簡馭繁、彰顯智慧。如教學(xué)“交換律”(蘇教版《數(shù)學(xué)》四年級上冊),通常教法是:教師出示多個算式,讓孩子計算,然后簡單比較,揭示加法交換律,接著就是簡單運用,這種教學(xué)遮蔽了“交換律”的普適價值。筆者教學(xué)時通過整合單元教材,以“高觀點”導(dǎo)引兒童學(xué)習(xí)。教學(xué)伊始,由等式“3+4=4+3”引發(fā)兒童猜想:是否任意兩數(shù)相加,交換加數(shù)位置,和都不變?然后讓學(xué)生舉例,通過多元例證進行“不完全歸納”,揭示“加法中,交換兩個加數(shù)的位置和不變”。接著引導(dǎo)兒童類比猜想:在加法中,交換幾個加數(shù)的位置,和還不變嗎?在乘法中是否也有交換律?在減法和除法中呢?由此突破作為單一運算的“加法交換律”,形成關(guān)于“交換律”(高觀點)本身的多個猜想。經(jīng)由不完全歸納“證明”和舉例“證偽”,兒童初步感受“加法、乘法交換律”。然后借助形象的“點子圖”,讓兒童直觀理解“加法、乘法交換律”,體驗數(shù)學(xué)思維和方法的精妙。最后用“()+()=()+()”引領(lǐng)兒童多樣表達(如字母表示、圖形表示、文字表達等)。由此滲透數(shù)學(xué)“集合思想”“辯證思想”“證明思想”“符號思想”等。
2“.發(fā)生式”教學(xué):讓兒童主動創(chuàng)造數(shù)學(xué)知識
“發(fā)生式”教學(xué)是數(shù)學(xué)教學(xué)最主要的教學(xué)路徑。因為絕大多數(shù)數(shù)學(xué)知識的源頭并不神秘,其形成過程往往是充滿溫情的,因此我們要順著知識誕生的內(nèi)在邏輯事理來進行教學(xué),引領(lǐng)兒童重溫人類知識生發(fā)歷程中的關(guān)鍵步驟。比如我們從很多相同的數(shù)相加比較麻煩,創(chuàng)造出乘法——它是加法的另一種表現(xiàn)形式;9+X,很多孩子算起來速度慢,由此我們建構(gòu)“湊十法”的數(shù)學(xué)模型。如教學(xué)“確定位置”(蘇教版《數(shù)學(xué)》六年級下冊),通常教法是:教師直接告訴學(xué)生“東北方向也叫北偏東”。如此,孩子便會產(chǎn)生疑問,“為什么東北方向叫北偏東,不叫東偏北?”鑒于孩子的合理發(fā)問,筆者教學(xué)時利用課件在平面圖上分別顯示從正北方向略偏東和從正東方向略偏北兩個位置,激發(fā)學(xué)生自主創(chuàng)造“數(shù)學(xué)規(guī)定”。經(jīng)由全班交流,孩子們普遍贊同“正北方向略偏東叫北偏東,正東方向略偏北叫東偏北”,因為這樣規(guī)定合理、方便。然后筆者用課件將目標位定于“北偏東45度方向”,激發(fā)孩子們的認知沖突——“這個方向既可認為是北偏東,也可認為是東偏北,兩種說法不就容易混亂嗎?而且,平面上的方向也被分成了八種。”然后筆者適時啟發(fā):在茫茫大海上航行,我們怎樣辨別方向?孩子們很快想到指南針,先用指南針確定南北,再看偏離這兩個方向的角度。至此,孩子深刻體驗到“北偏東”“南偏西”規(guī)定的合理性。
3.“歸納式”教學(xué):引領(lǐng)兒童進行數(shù)學(xué)的“過程抽象”
數(shù)學(xué)知識是人類“生命•實踐”活動的智慧結(jié)晶。數(shù)學(xué)教學(xué)如果按照“了解符號—記憶概念—強化符號—鞏固應(yīng)用”的邏輯展開,那么兒童經(jīng)歷的只是“符號抽象”“形式抽象”,而沒有體驗過程。“歸納式”教學(xué)(含完全歸納和不完全歸納兩種)是讓兒童在操作、感知大量“異質(zhì)性”材料基礎(chǔ)上,通過聚類分析(尋找不同中的相同)和分類分析(尋找相同中的不同),對“知識過程”進行抽象、提煉、概括。教學(xué)“正比例的意義”(蘇教版《數(shù)學(xué)》六年級下冊),通常教法是:首先復(fù)習(xí)數(shù)量關(guān)系,然后根據(jù)教材問題直奔主題,直導(dǎo)判定方法——兩種量相關(guān)聯(lián)、一種量擴大(縮小)另一種量也擴大(縮小),兩種量的比值(商)一定。其結(jié)果是兒童雖然能準確判定兩種量之間的關(guān)系,但卻并沒有體驗到變量之間的相互依存關(guān)系。鑒于此,筆者教學(xué)時首先出示豐富的感性素材,這些素材有蠟燭燃燒和汽車行駛(統(tǒng)計表出示),股票行情、兩個人的年齡變化情況、正方形的周長與邊長變化(圖像表示),正方形的面積公式。孩子們迅速發(fā)現(xiàn)這些素材中都是兩個變量,但兩個變量之間的關(guān)系不同。于是,孩子們對這些素材進行分類分析:第一類的兩種變量,一種量增加,另一種量也增加;第二類的兩種變量,一種量增加,另一種量反而減少;第三類的兩種變量,一種量增加,另一種量時增時減。然后筆者引導(dǎo)孩子對“同時增加”的一類做深入研究,通過圖像,孩子們將這一大類又分成兩小類:直線上升和曲線上升,繼而發(fā)現(xiàn)直線上升的兩種量之間的關(guān)系:一種量擴大,另一種量也擴大相同倍數(shù)。緊接著,筆者又讓學(xué)生對這一類進行聚類分析:即讓學(xué)生用表格、圖像、語言對“成正比例的兩種量”進行描述、刻畫,最后引導(dǎo)學(xué)生用解析式進行抽象概括。經(jīng)由“過程抽象”,孩子們深刻體驗到兩種變量之間的相互依存關(guān)系,用不同方式(表格感受、圖像直觀、符號抽象)從多個側(cè)面、多重層次、多個維度深刻認識了“成正比例的量”,達到對“成正比例的量”的本質(zhì)理解。
4“.驗證式”教學(xué):開掘兒童數(shù)學(xué)“再創(chuàng)造”潛能
從邏輯角度看,數(shù)學(xué)是以演繹性、抽象性為主的一門學(xué)科,但從數(shù)學(xué)史和兒童心理角度看,數(shù)學(xué)的發(fā)現(xiàn)和理解卻主要依賴于歸納,兒童數(shù)學(xué)學(xué)習(xí)對兒童經(jīng)驗的依賴性尤其突出。因此,教師要善于處理數(shù)學(xué)本體形式性與兒童認知經(jīng)驗性的關(guān)系。教學(xué)“三角形內(nèi)角和”(蘇教版《數(shù)學(xué)》四年級下冊)時,一位教師在引導(dǎo)學(xué)生回憶三角形的角、邊、如何畫三角形以及角的測量等知識后,讓每個孩子畫出不同形狀的三角形,測量內(nèi)角度數(shù)并相加,然后匯報。孩子們的回答有“179度”“180度”“181度”“182度不到”等。在學(xué)生爭論不休時,教師又讓學(xué)生通過剪角、拼角等活動試圖克服兒童經(jīng)驗性認知,得出“角的度量有誤差”以及“三角形內(nèi)角和是180度”的結(jié)論。但依然有孩子質(zhì)疑,認為剪拼過程中或許也會有誤差,或許三角形內(nèi)角和根本不是180度。面對知識本身的形式性與兒童探究的經(jīng)驗性之間的矛盾,教師一籌莫展。原因何在?從哲學(xué)視角看,在兒童經(jīng)驗與數(shù)學(xué)形式不發(fā)生矛盾時,可以讓兒童經(jīng)歷“過程抽象”。但當(dāng)二者發(fā)生矛盾時,教學(xué)就應(yīng)“演繹與歸納”結(jié)合。對于“三角形內(nèi)角和”的探究,筆者教學(xué)時首先讓孩子們猜想,從直覺上把握“三角形內(nèi)角和”。然后出示前人結(jié)論——三角形內(nèi)角和是180度。接著,讓孩子分組交流——用怎樣的辦法驗證?怎樣驗證?驗證時要注意什么?通過小組合作,產(chǎn)生了各種方法。最后全班交流,讓不同方法相互解釋、印證,并讓學(xué)生檢視自我數(shù)學(xué)活動——諸如量角中的測量誤差、折角中的操作不當(dāng)?shù)取S纱素S富兒童的認知策略,開掘兒童的“再創(chuàng)造”潛能。數(shù)學(xué)教學(xué)哲學(xué)化實踐是哲學(xué)觀牽引下數(shù)學(xué)教育的自覺實踐。宏觀上,數(shù)學(xué)教育哲學(xué)吁求教師對數(shù)學(xué)觀、數(shù)學(xué)教育價值觀進行“哲學(xué)反思”和“哲學(xué)追問”;微觀上,數(shù)學(xué)教育哲學(xué)吁求教師對數(shù)學(xué)本體知識進行“哲學(xué)考量”,從而讓數(shù)學(xué)教學(xué)內(nèi)蘊“哲學(xué)氣質(zhì)”。唯如此,方能構(gòu)筑屬于教師自己的“數(shù)學(xué)教育哲學(xué)”!
作者:汪樹林 單位:江蘇如皋市東陳鎮(zhèn)丁北小學(xué)