《差分方程的進展》是一本同行評議的開放獲取期刊。差分方程理論、方法及其廣泛的應(yīng)用已經(jīng)超越了青少年時期,在應(yīng)用分析中占據(jù)了中心地位。事實上,在過去的12年里,數(shù)百篇研究論文、幾部專著、許多國際會議和許多特別會議都見證了這一主題的擴散。微分方程和差分方程理論構(gòu)成了現(xiàn)實問題的兩種極端表示形式。例如,當(dāng)一個簡單的總體模型被表示為微分方程時,它表現(xiàn)出良好的解的行為,而相應(yīng)的離散模擬則表現(xiàn)出混沌行為。人口的實際行為介于兩者之間。發(fā)表在《差分方程進展》上的文章將包括這種情況。差分方程研究進展的目的是報道差分方程領(lǐng)域的新進展及其在各個領(lǐng)域的應(yīng)用。差分方程的進展將接受高質(zhì)量的文章,其中包含原始研究結(jié)果和具有特殊價值的調(diào)查文章。
Advances in Difference Equations is a peer-reviewed open access journal .The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 12 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. Articles published in Advances in Difference Equations will include such situations.The aim of Advances in Difference Equations is to report new developments in the field of difference equations, and their applications in all fields. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >