光譜學(xué)/sp?k?tr?sk?pi /是對(duì)物質(zhì)與電磁輻射之間相互作用的研究。從歷史上看,光譜學(xué)是通過(guò)棱鏡研究可見(jiàn)光的波長(zhǎng)分布而產(chǎn)生的。后來(lái),這個(gè)概念得到了很大的擴(kuò)展,包括與輻射能量的任何相互作用,作為其波長(zhǎng)或頻率的函數(shù),主要是在電磁頻譜中,雖然物質(zhì)波和聲波也可以被認(rèn)為是輻射能量的形式;近年來(lái),在LIGO和激光干涉測(cè)量的背景下,連引力波都很難與光譜特征聯(lián)系起來(lái)。光譜數(shù)據(jù)通常用發(fā)射光譜來(lái)表示,發(fā)射光譜是感興趣的響應(yīng)隨波長(zhǎng)或頻率變化的曲線。光譜學(xué),主要是在電磁光譜中,是物理學(xué)、化學(xué)和天文學(xué)領(lǐng)域的基本探索工具,允許在原子尺度、分子尺度、宏觀尺度和天文距離上研究物質(zhì)的組成、物理結(jié)構(gòu)和電子結(jié)構(gòu)。生物醫(yī)學(xué)光譜學(xué)在組織分析和醫(yī)學(xué)成像領(lǐng)域的重要應(yīng)用。
Spectroscopy /sp?k?tr?sk?pi/ is the study of the interaction between matter and electromagnetic radiation.Historically, spectroscopy originated through the study of visible light dispersed according to its wavelength, by a prism. Later the concept was expanded greatly to include any interaction with radiative energy as a function of its wavelength or frequency, predominantly in the electromagnetic spectrum, though matter waves and acoustic waves can also be considered forms of radiative energy; recently, with tremendous difficulty, even gravitational waves have been associated with a spectral signature in the context of LIGO and laser interferometry. Spectroscopic data are often represented by an emission spectrum, a plot of the response of interest as a function of wavelength or frequency.Spectroscopy, primarily in the electromagnetic spectrum, is a fundamental exploratory tool in the fields of physics, chemistry, and astronomy, allowing the composition, physical structure and electronic structure of matter to be investigated at atomic scale, molecular scale, macro scale, and over astronomical distances. Important applications arise from biomedical spectroscopy in the areas of tissue analysis and medical imaging.
SCI熱門(mén)推薦期刊 >
SCI常見(jiàn)問(wèn)題 >
職稱(chēng)論文常見(jiàn)問(wèn)題 >
EI常見(jiàn)問(wèn)題 >